
NXApp, Spring 1994 (Volume 1, Issue 2). Copyright ã1994 by NeXT Computer, Inc.    All Rights
Reserved.

Core Dump
written by Julie Zelenski

USING GDBä BREAKPOINTS
When you have a bug in your application and need to conduct a systematic
investigation of your code in operation, having the ability to stop the app
midstream and look around is essential. gdb's
breakpoint facilities are just what you need. Making use of these more
sophisticated breakpoint features can help you isolate unwelcome insects.
For basic debugging needs, the cooperation between Edit and gdb makes it easy
to set breakpoints in your code: You simply select a line from a source file in Edit
and use the gdb control panel to set a breakpoint on that line. However, to find
more complicated bugs you'll probably want to use gdb's more powerful
featuresÐsymbol completion, automatic command execution, conditional
breakpoints, and so on. Although these advanced tools are available only through
gdb's command-line interface, you'll probably discover that learning them is well
worth the effort.
Most of these tips were included in Julie's well-received ªZen of Debuggingº sessions presented
at past NEXTSTEP developer conferences.

Setting breakpoints

In gdb, you can set a breakpoint on a method or function name:
(gdb) break main
(gdb) break drawSelf::

If a method you specify is implemented by several classes, gdb presents a list for
you to choose from. You can circumvent this additional step by specifying the
class along with the method name:
(gdb) break [MyView drawSelf::]

When you set breakpoints like this, you may start to feel that the documentation
advantages of verbose method names like
initDataPlanes:pixelsWide:pixelsHigh: are outweighed by the typing
disadvantages. Fortunately, ever-clever gdb can perform Escape-completion on
symbols, including class names, method and function names, user-defined C
types such as structs and enums, as well as gdb commands! To see how this
works, type a few letters and then type Escape-L to see a list of the possible
completions.
(gdb) break NXB Escape-L
NXBPSFromDepth NXBlueComponent NXBrowserCell
NXBeep NXBoldSystemFont NXBundle
NXBeginTimer NXBreakArray NXByteOrder
NXBitmapImageRep NXBrightnessComponent
NXBlackComponent NXBrowser
(gdb) break NXB

The examples in this article show where you would type Escape sequences; keep in mind,
however, that the sequences don't actually echo to the screen.

Once you've typed enough characters to uniquely identify the symbol you want,
just press the Escape key and gdb fills in the rest for you.
(gdb) break initDataP Escape
(gdb) break initDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:
samplesPerPixel:hasAlpha:isPlanar:colorSpace:bytesPerRow:bitsPerPixel:

If you need to put a break midway through a function or method instead of at the
start, you can specify stops by line number or by code address. gdb interprets a
breakpoint on an integer
as a break on that line in the current source file. (Use the info source command
to see the current line number.) To break in a different file, specify the file name
followed by a colon and the line number. To break at a code address, type the
address preceded by an asterisk:
(gdb) break 10 Break at line 10 in the current file
(gdb) break MyObject.m:10 Break at line 10 in file MyObject.m
(gdb) break *0x50069b4 Break at the specified address

Commands on breakpoints
Once you've hit a breakpoint, you have a chance to examine the state of your
application. Use
the backtrace command to find out where control has come from, based on a
list of stack frames. Use the frame command to choose which of those stack
frames is selected. The info frame, info locals, and info args commands
provide you with more information about the chosen frame.    Remember that
gdb's command-line interpreter can evaluate any C or Objective C expression, so
when your application is stopped in gdb, you can examine and set variables of
your program, make function calls, send messages to objects, and so on.

You may want to execute the same commands each time you hit a given
breakpoint. gdb breakpoint commands nicely handle this task. Breakpoint
commands enable you to specify a set of commands that gdb executes each
time the breakpoint is reached. Any C or Objective C expressions are allowed, as
are gdb commands, such as turning on and off other breakpoints or changing
which expressions are automatically displayed. A couple of noteworthy special
commands are silent, which causes gdb to skip the usual printing when arriving
at a breakpoint, and continue, which continues execution of your application.

Jumping over misbehaving code
One handy use for breakpoint commands is simply skirting bugs.    For example,
suppose you
have introduced some code that causes your application to crash, but you'd like
gdb to get past the errant code and reach another breakpoint you've set. Set a
breakpoint right before the misbehaving code, and use breakpoint commands to
jump over it. Here's an example:
- someMethod
{

....
[anObject free];
...
[anObject doOneMoreThing]; // Line #192: Oops, I didn't mean to do this!
....
return self;

}

(gdb) break 192 Break on the line that sends message to freed object
(gdb) commands Start the set of breakpoint commands
Type commands for when breakpoint 1 is hit, one per line.

End with a line saying just "end".
silent Turn off the somewhat noisy breakpoint
announcement
jump 193 Jump to the next line
continue Continue executing the program
end End the set of commands

Without any intervention on your part, gdb will now skip over the line that sends
a message to the freed object, allowing you to debug other things. The jump
command specifies where to continue execution. At other times, it may be more
appropriate to use the return command to force a return from the current
method or function.

Fixing program errors using gdb
Often you can correct an error right in the debugger, testing the fix without going
through the entire compile-and-link cycle.    Suppose you've forgotten to allocate
space for a string. Copying into this uninitialized pointer is causing grief, but
inserting a malloc call in the debugger would work around the problem:
- setStringValue:(const char *)newString
{

char *str;

strcpy(str, newString); // Line #166: Bad news, forgot to allocate str
return self;

}

(gdb) break 166 Break on strcpy line
(gdb) commands
Type commands for when breakpoint 4 is hit, one per line.
End with a line saying just "end".

silent
print str = (char *) malloc(str,strlen(newString) + 1)
continue
end

These breakpoint commands stop before the strcpy, allocate the string, and
continue. So, you fix the bug in the debugger and go on automatically.   
When you use this technique, don't forget to propagate the changes back to your
original source code to permanently fix the problem!

Tracing PostScriptâ
Another use for breakpoint commands is to control gdb's state. The gdb
commands showps and shownops allow you to turn PostScript tracing on and
off, respectively. This tracing is invaluable when you're trying to understand and
optimize the PostScript code your application sends to
the WindowServer. However, turning on tracing, even for a short period, quickly
floods your gdb session with more information than you can sift through. With
judicial use of breakpoint commands, you can focus your investigation and more
tightly control PostScript tracing.
For example, assume you're interested only in the PostScript generated by your
drawSelf:: method.    You could set a breakpoint at the beginning of the method
with commands to turn
PostScript tracing on, and set another at the end to turn it off.

(gdb) break [MyView drawSelf::]
(gdb) commands

Type commands for when breakpoint 8 is hit, one per line.
End with a line saying just "end".
silent
showps
continue
end

(gdb) break 124 Break at end of drawSelf:: method
(gdb) commands
Type commands for when breakpoint 9 is hit, one per line.
End with a line saying just "end".
silent
shownops
continue
end

Now you will see the PostScript code generated by the drawSelf:: method only,
uncluttered by other PostScript code.

Controlling other breakpoints
Breakpoint commands are also useful for controlling gdb features such as
automatically displayed expressions and even other breakpoints.    When an
object seems to be getting freed unexpectedly, setting a breakpoint on free is
unrealistic because it's called so frequently. If you suspect the object is being
freed somewhere in the execution of the cut: method, you can set a breakpoint
on free, disable it, then use a pair of breakpoints at the beginning and end of the

cut: method to toggle the free breakpoint.
(gdb) break free
(gdb) disable 6

(gdb) break [MyView cut:]
(gdb) commands
Type commands for when breakpoint 7 is hit, one per line.
End with a line saying just "end".
silent
enable 6
continue
end

(gdb) break 210 Break at end of cut: method
(gdb) commands
Type commands for when breakpoint 8 is hit, one per line.
End with a line saying just "end".
silent
disable 6
continue
end

Now execution stops on free only when it is invoked in the window you've
defined.

Conditional breakpoints
gdb also allows you to make stopping at a breakpoint contingent on a condition.   

You supply an expression that's evaluated each time the breakpoint is crossed.
Control stops at the breakpoint only if the expression is true. The C or Objective C
expression is evaluated in the scope of the breakpoint. When constructing the
conditional expression, you can refer to program variables, gdb convenience
variables, and execute function and method calls. Here are a few examples:

(gdb) break 10 if i > 25
(gdb) break cut: if sender == NXApp
(gdb) break [MyTextField setStringValue:] if (!strcmp(newString, "Hello world"))
(gdb) break malloc if !NXMallocCheck()

The last condition is particularly interesting because it checks for heap corruption
on every call to malloc(). Only when the result from NXMallocCheck() indicates
an inconsistency does gdb stop at the breakpoint.
The above syntax allows you to specify a condition at the same time as you set a
breakpoint. To add or remove a condition for a previously set breakpoint, use the
condition command:

(gdb) condition 8 i == 15     Make breakpoint #8 conditional on (i == 15)
(gdb) condition 8    Remove the condition from breakpoint #8

One nifty use for conditional breakpoints is to define a counter variable and break
on a specified iteration. Perhaps the first 999 invocations of a method work fine,
but something goes wrong after that.    You don't want gdb to stop the first 999
times, so you can set up a conditional breakpoint using a counter constructed

from a gdb convenience variable.
(gdb) set $count = 0
(gdb) break funMethod: if ++$count == 1000

Each time funMethod: is invoked, gdb evaluates the expression ++$count ==
1000, which increments the $count variable on each breakpoint crossing. When
$count equals 1000, gdb stops at the breakpoint.    Using a counter for this
purpose is such a common need that gdb provides an ignore command, which
allows you to specify how many crossings to ignore before stopping.

Conditionals and commands together
A conditional breakpoint combined with a set of breakpoint commands can be a
powerful tool. The conditional expression is evaluated each time the breakpoint is
crossed; when it's true, gdb executes the commands. If you can determine with a
test whether your program has gotten to some unusual state, you can set up
some commands that examine variables or do fix-up work only in those cases.
Let's say you have a method getSize: that takes one argument, a pointer to an
NXSize, and fills in the size. But at some point, a NULL pointer is passed to this
method and it crashes trying to
dereference it. Only when this exceptional condition is detected do you want gdb
to print out some indication and return from the method without copying the size
into the pointer. The following commands create this breakpoint:

(gdb) break [MyObject getSize:] if size == 0

(gdb) commands
Type commands for when breakpoint 12 is hit, one per line.
End with a line saying just "end".
silent
printf "Someone sent a null pointer to getSize:!\n"
backtrace 5
return
continue
end

Each time a NULL pointer is passed to getSize:, gdb prints out a notification,
gives a short
backtrace of where program execution came from, and short-circuits the error by
returning from getSize: before any damage is done.
With combinations of conditional breakpoints and commands, you can catch and
handle errors such as attempting to read a nonexistent file, scribbling off the end
of a string, division by zero, and others by testing for the exceptional situation
and preventing the harm it will cause without
affecting the behavior under normal circumstances.

Happy bug hunting!
Not putting in bugs in the first place is one great strategy for developing flawless
apps, but not everyone is quite that self-actualized. The rest of us must spend
time exterminating those pesky critters. Familiarity with gdb's breakpoint
commands and conditions can go a long way in helping you understand and

correct the misbehavior of your app.

Julie Zelenski is a member of the Developer Support Team; she provides help on the Application
Kit, Objective C, user interface design, performance, and lots of debugging. You can reach her
by e-mail at julie@next.com. Debugging tips and techniques to be shared with the
community are welcomed!

Special thanks to Sharon Zakhour for making Julie write this column!
__
Next Article NeXTanswer #1641 @implementation
Previous article NeXTanswer #1640 First Responder
Table of contents
http://www.next.com/HotNews/Journal/NXapp/Spring1994/ContentsSpring1994.html

